

Available online at www.sciencedirect.com

JOURNAL OF CATALYSIS

Journal of Catalysis 250 (2007) 75-84

www.elsevier.com/locate/jcat

Comparison of the catalytic activity of MO₂ (M = Ti, Zr, Ce) for soot oxidation under NO_x/O₂

I. Atribak, I. Such-Basáñez, A. Bueno-López*, A. García-García

Department of Inorganic Chemistry, University of Alicante, Ap. 99, E-03080 Alicante, Spain Received 15 March 2007; revised 9 May 2007; accepted 20 May 2007

Available online 29 June 2007

Abstract

The catalytic activity of TiO₂, ZrO₂, and CeO₂ for soot oxidation under NO_x/O₂ was compared. Characterisation of the oxides by N₂ adsorption at -196 °C, Raman spectroscopy, and XRD revealed that the predominant crystalline phase of TiO₂ (rutile or anatase) and ZrO₂ (monoclinic or tetragonal) had no significant affect on the catalytic activity of these oxides for soot oxidation with NO_x/O₂. CeO₂, with the only allowed fluorite structure, is the most active oxide because accelerates the NO conversion to NO₂, whereas TiO₂ and ZrO₂ do not catalyse this reaction. Once NO₂ is produced by CeO₂, part of it reacts with soot, and a certain amount is stored on CeO₂. NO_x stored on CeO₂ under reaction conditions (around 450 °C) does not accelerate soot oxidation and can be evolved under N₂ flow but not under a NO_x/O₂ stream. NO_x storage on TiO₂ and ZrO₂ under reaction conditions was not detected. An additional benefit of CeO₂ with regard to TiO₂ and ZrO₂ is that the CeO₂-catalysed soot oxidation yields mainly CO₂, whereas TiO₂ and ZrO₂ yield higher percentages of CO. This can be attributed to the lowest CeO₂-catalysed soot oxidation temperature and to the ability of CeO₂ to catalyse CO oxidation to CO₂. The effect of thermal sintering at 800 °C (decreased BET surface area and increased crystal size) on CeO₂ is more important than on TiO₂ and ZrO₂, but 800 °C-calcined CeO₂ is still more active for soot combustion than the other oxides studied. © 2007 Elsevier Inc. All rights reserved.

Keywords: Diesel exhausts; Soot; Metal oxide catalyst; CeO₂; TiO₂; ZrO₂; NO_x

1. Introduction

Vehicles used in heavy-duty applications incorporate diesel engines. This includes buses, large trucks, and off-highway construction mining equipment. Furthermore, diesel engines are winning an increasing share of the worldwide light-duty vehicle market [1]. Currently in Europe, about 100% of heavy duty, 60% of light-duty commercial vehicles, and 20% of passenger cars are diesel-powered. The popularity of the diesel engine revolves around its fuel efficiency, reliability, and durability. The high compression ratios and relatively high O₂ concentrations in the diesel combustion chambers are responsible for the better fuel efficiency and lower CO and hydrocarbon emissions compared with a gasoline engine [2]. However, these same factors

^{*} Corresponding author. Fax: +34 965 90 34 54.

E-mail address: agus@ua.es (A. Bueno-López).

result in higher NO_x emissions [3] and emanation of particulate matter comprised primarily of carbon, on which heavy hydrocarbons, sulfates, and water are adsorbed. NO_x and particular matter have been linked to serious environmental and health problems.

Because the NO_x and particulate emissions cannot be avoided by engine modifications alone, postcombustion catalytic processes for reducing the emission of both harmful substances must be developed. Selective catalytic reduction (SCR) and NO_x-storage catalysts have been proposed for NO_x reduction. Catalytic regeneration of diesel particulate filters for soot removal is also promising. A number of catalysts have been investigated for pollution control in diesel exhausts, including Pt [4], molten salts [5], perovskites [6], and different metal oxides [7,8] among others.

A soot oxidation catalyst (SOC) usually combines highly active metals or metal oxides with different supports, including

^{0021-9517/\$ –} see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2007.05.015

zeolites and metal oxides, among others. In many cases, the role of the support in the catalytic activity of the metal is crucial. For example, Oi-Uchisawa et al. [9] studied soot oxidation under simulated diesel exhaust conditions with Pt supported on different oxides and found that activity decreased in the order $Ta_2O_5 > Nb_2O_5 \approx WO_3 \approx SnO_2 \approx SiO_2 > TiO_2 > Al_2O_3 \approx$ ZrO₂. Pt supported on zeolites (Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AlPO-11), Al₂O₃, and TiO₂ were also tested for soot oxidation under simulated diesel exhaust conditions, and a significant effect of the support also was reported in this case [10]. Neeft et al. [11] studied catalysed soot oxidation by O₂ with two catalysts containing a mixture of metals [Cu/K/Mo/(Cl)] supported on TiO₂ and ZrO₂, respectively, the former being more active than the latter, and Braun et al. [12] demonstrated that Mo/SiO₂ is more active than Mo/TiO₂ for soot oxidation in air.

On the other hand, the role of the support in catalysts is also crucial to NO_x removal. Recently, a series of Pt/MO₂ and Pt- Ba/MO_2 (M = Ce, Si, Zr) catalysts was investigated in terms of NO_x storage and subsequent reduction of the stored NO_x species by propene. Among the Ba-free catalysts, Pt/CeO₂ exhibited the highest NO_x uptake, whereas Pt/SiO₂ demonstrated no NO_x uptake [13]. A study of the chemisorptive properties of Pt/Al₂O₃, Pt/CeO₂, and Pt/ZrO₂ catalysts and of the bare supports toward NO and propylene concluded that the relative population and thermal stability of adsorbed NO_x species depended on the nature of the metal oxide used as the support [14]. Pt/ZrO₂ promotes NO dissociation and nitrite/nitrate decomposition at lower temperatures compared with Pt/Al₂O₃ and Pt/CeO2 catalysts. Investigation of the catalytic performance of the three catalysts for the SCR of NO by propylene revealed that the Pt/ZrO₂ catalyst was much more active than Pt/CeO₂, with Pt/Al₂O₃ exhibiting an intermediate performance [14].

But despite the decisive role of the supports demonstrated in many cases, few studies have focused on comparisons of catalytic activity of single oxides for soot oxidation under diesel exhaust conditions. Van Doorn et al. [15] studied the catalytic role of several metal oxides in soot combustion by O₂ and concluded that Al₂O₃ and SiO₂ had no catalytic effect; TiO₂ and ZrO₂ had moderate activity, and CeO₂, La₂O₂CO₃, and V₂O₅ exhibited substantial activity for soot combustion. Numerous metal oxide catalysts for soot oxidation by O₂ were also screened by Neeft et al. [16], but those studies were carried out without NO_x in the gas mixture, and thus the conclusions cannot be directly extrapolated to diesel exhaust conditions.

Considering these premises, the aim of the present study was to compare the catalytic activity for soot oxidation under NO_x/O_2 of three metal oxides (TiO₂, ZrO₂, and CeO₂) commonly used as catalyst supports and even as catalysts in some cases. These oxides were selected because they present different activities for soot oxidation, with CeO₂ the most active oxide and ZrO₂ the least active oxide considering the studies noted in this section [9,11]. Taking into account the highest activity of CeO₂, special attention was paid to the behaviour of this oxide.

2. Experimental

2.1. Catalyst preparation

CeO₂ and ZrO₂ samples were prepared by precipitation of the corresponding hydroxides (at pH 9) from aqueous solutions of Ce(NO₃)₃·6H₂O and ZrO(NO₃)₂·6H₂O, respectively (precursors provided by Aldrich, 99.9% purity), by dropping a diluted water solution of NH₃. The hydroxides were dried in air at 110 °C overnight and further calcinated at 600 or 800 °C for 2 h. TiO₂ samples were prepared by thermal treatment of TiO₂ (P25, Degussa) in air for 2 h at the same temperatures. The samples are designated MO₂- T^a , where M = Ti, Zr, or Ce and $T^a = 600$ or 800 °C.

2.2. Catalyst characterisation

BET surface area of samples was determined by physical adsorption of N₂ at -196 °C in an automatic volumetric system (Autosorb-6B, Quantachrome) after degassing at 250 °C for 4 h. Raman spectra were recorded in a LabRam Jobin-Yvon (Horiba) spectrograph coupled to a microscope. A He/Ne laser ($\lambda = 632.82$ nm) source was used as the light source, and a Perltier cooled CCd served as the detector. A power of approximately 0.9 mW reached the sample through a ×50 VLWD (n/a = 0.50) objective for 3 s, and 15 consecutive spectra were added to obtain the final spectrum. Several expressions have been proposed to estimate the ratio of tetragonal and monoclinic phases in ZrO₂ samples, relying on the bands at 148, 267 cm⁻¹ (tetragonal only), and the doublet at 180–190 cm⁻¹ (due to monoclinic only) [17–19]. The most commonly used expression, and also the one used in this study, is

$$F_{t} = 0.97 (I_{t}(148 \text{ cm}^{-1}) + I_{t}(267 \text{ cm}^{-1})) \times (I_{t}(148 \text{ cm}^{-1}) + I_{t}(267 \text{ cm}^{-1}) + I_{m}(180 \text{ cm}^{-1}) + I_{m}(190 \text{ cm}^{-1}))^{-1}$$
(1)

where I_i is taken to be the integral intensity of the band and no polarization effects are considered [19–21].

X-ray diffractograms were measured on a Seifert powder diffractometer using the Cu K_{α} radiation ($\lambda = 0.15418$ nm). Spectra were recorded between 10° and 60° (2 θ) with a step size of 0.05 and measuring for 3 s at each step. From XRD data, different phases of the studied compounds were identified and quantified. Phase composition on TiO₂ samples was calculated using

$$F_{\rm R} = \frac{1.26I_{\rm R}(110)}{I_{\rm A}(101) + 1.26I_{\rm R}(110)} \tag{2}$$

where $F_{\rm R}$ is the rutile fraction, $I_{\rm A}(101)$ is the intensity of the most intense anatase peak, and $I_{\rm R}(110)$ is the intensity of the most intense rutile peak [22,23].

Phase composition determination of ZrO₂ samples was performed in a similar manner, and the following equation presents the expression to calculate the fraction of tetragonal phase from XRD patterns:

$$F_{\rm t} = \frac{I_{\rm t}(111)}{I_{\rm t}(111) + I_{\rm m}(-111) + I_{\rm m}(111)} \tag{3}$$

where F_t is the tetragonal fraction, $I_t(111)$ is the intensity of the tetragonal peak (111), and $I_m(-111)$ and $I_m(111)$ are the intensities of the monoclinic peaks (-111) and (111), respectively.

The crystal sizes (D) of all the phases present in the catalysts were estimated using Scherrer's equation

$$D = \frac{K\lambda}{\beta\cos\theta} \tag{4}$$

where λ is the wavelength of the radiation used (Cu K_{α}), β is the full width at half maximum of the diffraction peak considered, K is a shape factor taken as 0.9 (1 being a perfect sphere), and θ is the diffraction angle at which the peak appears.

2.3. Catalytic activity

Reactivity tests were carried out at atmospheric pressure in a cylindrical fixed-bed reactor (1 cm of inner diameter) connected to specific NDIR-UV gas analysers for NO, NO₂, CO, CO₂, and O₂ (Fisher–Rosemount, models BINOS 1004, 100 and 1001). Soot-catalysts mixtures (80 mg of catalyst + 20 mg of soot) were prepared in loose contact [11] and diluted with 350 mg of SiC. The addition of SiC decreases the flow resistance of the sample bed and provides a heat sink, which decreases temperature gradients in the sample. The reactive gas mixtures used $(500 \text{ ml/min}, \text{GHSV} \sim 30,000 \text{ h}^{-1})$ contained 0.05% NO_x + 5% O_2 + balance N_2 or 5% O_2 + balance N_2 . Temperatureprogrammed reactions (TPRs) were performed by raising the temperature from 25 to 700 °C at a rate of 10 °C/min. In addition, isothermal reactions at 450 °C were carried out, consisting of heating the sample from room temperature up to 450 °C under N₂ flow, after which the inert gas was replaced by the reactive mixture. Isothermal reactions were conducted until the constant level of the different gases was reached.

Soot conversion profiles were determined from the CO and CO_2 evolved, and the selectivity of the different catalysts for CO emission was determined using

$$CO/CO_x$$
 (%) = 100CO/(CO + CO₂). (5)

Blank experiments were also performed under the aforementioned experimental conditions but without soot, that is, using only the catalyst.

In addition, TPRs were performed with selected catalysts under the described conditions but following the gas composition with a gas chromatograph (HP model 6890 Plus Series) equipped with a switched dual-column system and two serial columns (a Porapak Q 80/100 for CO₂ and N₂O separation and a Molecular Sieve 13X for O₂, N₂, and CO separation) and a Chemiluminiscence NO_x analyser for NO and NO₂ analysis (SIGNAL 400VM).

The model soot used in this study was carbon black from Degussa S.A. (Printex-U), with 92.2% C, 0.6% H, 0.2% N, and 0.4% S. The ash and adsorbed hydrocarbon percentages were <0.1 and 5.2%, respectively, and the BET surface area was $95 \text{ m}^2/\text{g}$.

3. Results

3.1. Characterization of materials

BET surface areas of the samples used in this study are displayed in Table 1. TiO₂-600 and ZrO₂-600 had the same BET area (47 m²/g), with CeO₂-600 exhibiting a lower value (37 m²/g). As expected, the samples calcined at 800 °C had lower surface area values than those samples calcined at 600 °C due to sintering. Calcination temperature had a greater effect on CeO₂ compared with TiO₂ and ZrO₂; 84% of the area of CeO₂ was lost when calcined at 800 °C compared with that at 600 °C, with comparable values of 57% for ZrO₂ and 66% for TiO₂.

All samples were characterised by Raman spectroscopy; the data are collected in Fig. 1. Raman spectra of TiO₂ calcined at 600 and 800 °C are shown in Fig. 1a. TiO₂ is known to appear mainly in two different crystal structures (besides brookite): rutile and anatase (designated R and A in Fig. 1a). The Raman spectrum of TiO₂ calcined at 800 °C was consistent with the spectrum of pure rutile, even though the presence of anatase cannot be ruled out. TiO₂-800 showed bands at 142, 235, 446, and 608 cm⁻¹. The bands at 142, 446, and 608 cm⁻¹ can be assigned to the B_{1g} , E_g , and A_{1g} modes of rutile, respectively [24,25]. The broad band at 234 cm^{-1} has been identified as a second-order phonon that disappears at low temperature [26]. The spectrum of TiO₂-600 presented bands at 144, 394, 517, and 637 cm⁻¹, which can be assigned to E_g , B_{1g} , A_{1g} , and $E_{\rm g}$ of anatase, respectively [27]. TiO₂-600 also presented features of the Raman spectrum of rutile appearing as shoulders at 446 and 607 cm⁻¹, indicating a mixture of both rutile and anatase phases on sample TiO₂-600, even though estimating phase proportion by Raman spectroscopy for these materials is not straightforward.

The Raman spectra of zirconia samples calcined at 600 and $800 \,^{\circ}$ C is shown in Fig. 1b. When ZrO₂ is synthesised by a pre-

Table 1

Phase composition, crystal sizes, and BET surface area of the catalysts

Sample	Phase (fraction)/particle size (nm)	$S_{\rm BET}~({\rm m}^2/{\rm g})$
TiO ₂ -600	Rutile (0.36)/32; Anatase (0.64)/21	47
TiO ₂ -800	Rutile (1)/45	16
ZrO ₂ -600	Tetragonal (0.56 ^a ; 0.50 ^b)/13; Monoclinic (0.44 ^a ; 0.50 ^b)/11	47
ZrO ₂ -800	Tetragonal (0.24 ^a ; 0.22 ^b)/17; Monoclinic (0.76 ^a ; 0.78 ^b)/15	20
CeO ₂ -600	Fluorite (1)/18	37
CeO ₂ -800	Fluorite (1)/39	6

^a Phase fraction calculated by XRD.

^b Phase fraction calculated by Raman spectroscopy.

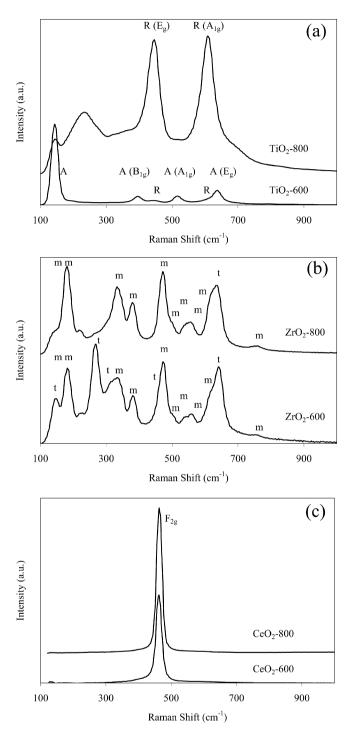


Fig. 1. Raman spectra of (a) TiO₂, (b) ZrO₂, and (c) CeO₂ catalysts.

cipitation route, the predominant phase will be monoclinic or tetragonal, depending on calcinations conditions (mainly temperature, time, and atmosphere) [28]. It is quite common to obtain materials in which a mixture of monoclinic and tetragonal phases appears. The Raman spectra of ZrO₂ shown in this paper exhibit features of both monoclinic and tetragonal phases (*m* and *t*, respectively, in Fig. 1b). The tetragonal phase is characterized by six Raman active modes $(D_{4h}^{15}, A_{1g} + 2B_{1g} + 3E_g)$, whereas for the monoclinic phase (C_{2h}^{5}) , 18 active Raman modes are expected from symmetry analysis [29].

Tetragonal zirconia presented bands at 148, 267, 322, 464, and 648 cm⁻¹. Some of these bands were unique, but most of them overlapped significantly with bands due to the monoclinic phase of zirconia, which presented bands a doublet at 180 and 190, 333, 380, 475, 502, a doublet at 539 and 559, 618, and 757 cm⁻¹, some of which are not resolved in Fig. 1b due to the analysis conditions used. The values obtained for the fraction of tetragonal and monoclinic phase, along with those obtained by XRD, are summarized in Table 1.

The samples of CeO₂ calcined at 600 and 800 °C (Fig. 1c) presented a Raman characteristic band at about 465 cm⁻¹, which can be unambiguously assigned to the F_{2g} mode of fluorite-type structures [30–32]. Band position did not change when calcination temperature was modified; however, an increase in the calcination temperature produced a significant increase in the intensity of the F_{2g} band and narrowing of the band. Thus, increased crystallinity of the material with increasing calcination temperature can be inferred.

Samples were also characterized by XRD; Fig. 2 collects XRD patterns of all of the materials used in this study. XRD patterns of TiO₂ calcined at 600 and 800 °C are shown in Fig. 2a. Sample TiO₂-600 comprised a mixture of anatase and rutile phases, whereas TiO₂-800 did not show the main features of anatase [A(101) and A(200)]. These results are congruent with the observations from the Raman spectra of TiO₂-600 and TiO₂-800. The results of phase composition analysis, together with crystal size of each phase [calculated from Scherrer's equation, using R(110) and A(101) peaks] are compiled in Table 1. Narrower rutile peaks can be seen at higher calcination temperatures, and thus an increase in crystallite size can be deduced.

XRD diffractograms of zirconia samples show that both samples used in this study are mixtures of monoclinic and tetragonal phases. The most important features of the diffractogram are seen between 20° and 40° (2 θ), with two intense peaks [m(-111) and m(111)] due to the monoclinic phase and one intense peak due to the tetragonal phase [t(111)]. From Fig. 2b, it can be concluded that at the higher calcination temperature (ZrO₂-800), monoclinic phase was slightly more abundant than tetragonal phase, whereas the opposite situation was encountered at the lower temperature (ZrO₂-600). As in the case of TiO₂, peaks corresponding to the monoclinic phase of ZrO₂ calcined at 800 °C were narrower, and, as shown in Table 1, crystal sizes were larger.

XRD analysis of CeO₂ is shown in Fig. 2c. No other phase than ceria with a fluorite-type structure was detected; however, crystal size changes can be seen in the diffractograms, with narrower peaks in CeO₂-800 compared with those in CeO₂-600 are. Data on crystal size are compiled in Table 1. In general, increased calcination temperature led to a significant drop in the surface area of CeO₂ and a consequent increase in crystal size (54%).

3.2. Catalytic activity

Fig. 3 shows the soot conversion profiles obtained in TPRs performed with TiO₂, ZrO_2 , and CeO_2 catalysts under NO_x/O₂,

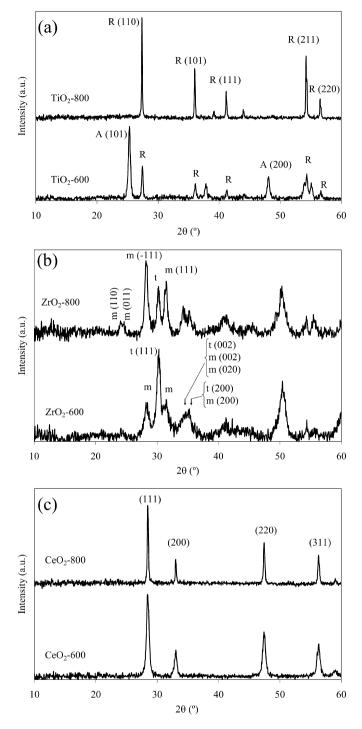


Fig. 2. XRD patterns of (a) TiO_2 , (b) ZrO_2 , and (c) CeO_2 catalysts.

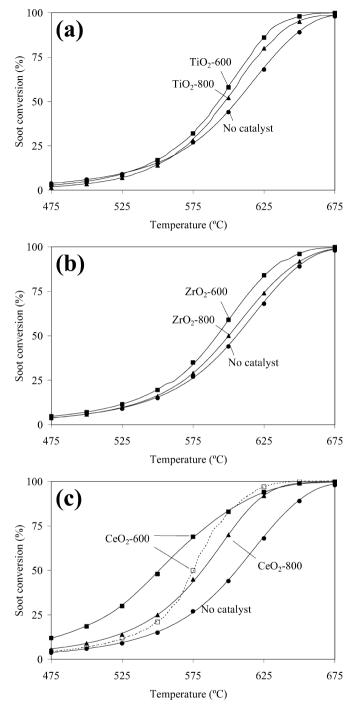


Fig. 3. Soot conversion in temperature programmed reactions under NO_x/O_2 (solid symbols) with different catalysts. (a) TiO₂, (b) ZrO₂, and (c) CeO₂. (The experiment represented by open symbols was carried out under O₂.)

along with the profile of the uncatalysed reaction. The corresponding temperatures for 50% soot conversion ($T_{50\%}$) are included in Table 2. All of the metal oxides tested decreased the soot oxidation temperature, with differences among them observed. CeO₂ catalysts were more active than their counterpart ZrO₂ and TiO₂ catalysts, and in general, catalysts calcined at 600 °C were more active than those calcined at 800 °C. The most active catalyst, CeO₂-600, lowered the $T_{50\%}$ parameter at 55 °C with regard to the uncatalysed reaction. The catalytic activity of CeO₂-600 also was checked under O₂ (Fig. 3c); despite

exhibiting less activity for soot oxidation than under NO_x/O_2 atmosphere, significant activity was maintained. The high activity of CeO₂ for soot combustion with O₂ was attributed to the production of active oxygen, that is, gas-phase O₂ was incorporated to the CeO₂ lattice, and atomic oxygen from the lattice was delivered to soot [7,8]. However, in the presence of NO_x, additional factors play important roles, as we discuss next.

The analysis of the CO and CO₂ emission during the TPRs provides complementary information. From a practical stand-

Table 2 Temperature for 50% soot conversion ($T_{50\%}$) and selectivity to CO (determined with Eq. (5)) in temperature programmed reactions performed under NO_x/O₂

Sample	<i>T</i> _{50%} (°C)	CO/CO _x (%)
TiO ₂ -600	593	56.6
TiO ₂ -800	598	60.2
ZrO ₂ -600	592	43.4
ZrO ₂ -800	600	62.6
CeO ₂ -600	551	15.2
CeO ₂ -800	581	67.5
Uncatalysed	606	65.5

point, CO₂ formation is preferable due to the high CO toxicity. The percentages of CO emitted during the TPRs performed under NO_x/O₂ were calculated according to Eq. (5) and are included in Table 2. The uncatalysed carbon gasification yielded both CO and CO₂, with CO the most abundant component (65.5%). All of the catalysts calcined at 600 °C decreased CO formation, and among these, CeO₂-600 yielded the lowest amount of CO. In contrast, the catalysts calcined at 800 °C hardly improved CO₂ formation with regard to CO.

 NO_x elimination profiles obtained with the series of catalysts studied are given in Fig. 4. Most of the catalysts exhibited a single band, and the temperatures of maximum NO_x elimination and of the onset of NO_x elimination corresponding to catalysed reactions decreased with regard to those for uncatalysed reactions. The sample CeO₂-600 showed unique behaviour; the NO_x elimination profile obtained with this catalyst was complex and ranged from approximately 225 °C to above 700 °C. This broad profile suggests that several processes are occurring, as we discuss later.

Considering the temperatures of maximum NO_x elimination with the series of oxides calcined at 600 or 800 °C, the activity for NO_x elimination increases in the order $\text{ZrO}_2 \leq \text{TiO}_2 < \text{CeO}_2$, in agreement with the trend of activity for soot oxidation deduced from Fig. 3 and from the $T_{50\%}$ values included in Table 2.

O₂ conversion profiles corresponding to selected TPRs performed under NO_x/O_2 are plotted in Fig. 4 together with those of NO_x elimination. Fig. 4a shows quite parallel NO_x and O_2 elimination profiles during the TiO₂-600-catalysed reaction, with the NO_x elimination onset temperature slightly lower than the O₂ elimination onset temperature. Quite similar behaviour can be observed for the catalyst ZrO₂-600 shown in Fig. 4b; that is, the NO_x and O_2 elimination profiles are concurrent. This type of behaviour, with parallel O_2 and NO_x elimination curves, was also observed in the reactions performed with all of the catalysts calcined at 800 $^\circ C$ (O₂ profiles not included for brevity). This suggests that in all of these experiments, NO_x and O₂ were consumed due to reduction with soot once the reaction temperature for its gasification was achieved. The NO_x elimination profiles obtained with TiO₂-600 and ZrO₂-600 were slightly different, whereas the soot conversion profiles (Fig. 3) corresponding to these experiments were very similar. In the experiment performed with TiO₂-600, NO_x elimination at ca. 450-500 °C was higher than that using ZrO₂-600 as a catalyst, suggesting that TiO_2 -600 is slightly more selective toward NO_x

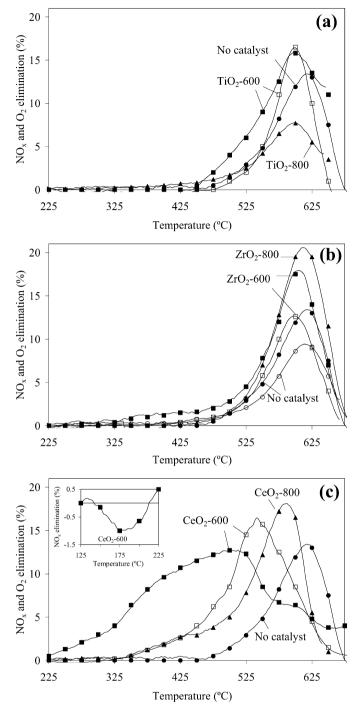


Fig. 4. NO_x elimination in temperature programmed reactions under NO_x/O_2 (solid symbols) and O_2 elimination in some of these experiments (open symbols). Catalysts: (a) TiO₂, (b) ZrO₂, and (c) CeO₂.

reduction with regard to O_2 combustion than ZrO_2 -600 in this temperature range.

The CeO₂-600 catalyst exhibited a unique behaviour, with NO_x and O₂ elimination profiles not following parallel trends. As mentioned earlier, NO_x elimination occurred within a wide range of temperatures, from ca. 225 °C to >700 °C. In contrast, the corresponding O₂ elimination curve exhibited a single peak between 325 and 700 °C. These differences between O₂ and NO_x elimination profiles indicate that, in addition to the

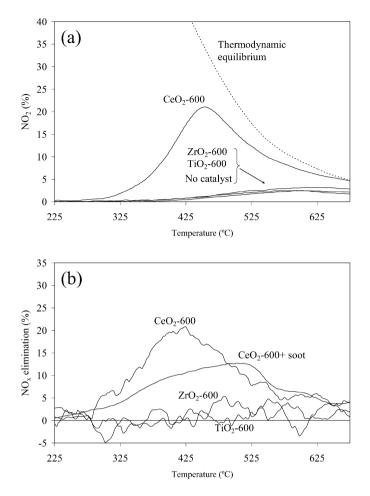


Fig. 5. Blank temperature programmed reactions (without soot) performed with catalysts calcined at 600 °C. (a) NO conversion to NO₂ and (b) NO_x retention on catalysts. (The profile obtained with the catalyst CeO₂-600 from the soot oxidation experiment is included for comparison.)

aforementioned NO_x and O₂ reduction by soot at ca. 550 °C, an additional NO_x elimination pathway was present at lower temperatures. Finally, note that a small amount of NO_x was adsorbed on CeO₂-600 at room temperature, and then released between 150 and 200 °C, as shown on Fig. 4c.

In an attempt to provide some insight into the NO_x elimination processes occurring in the catalysed soot oxidation experiments, we carried out blank TPRs (without soot) with the three catalysts calcined at 600 °C. The NO₂ percentage in the outlet gas mixture, calculated on the basis of the inlet NO_x level, is plotted as a function of temperature in Fig. 5a, and the NO_x elimination profiles are included in Fig. 5b. It is important to note that the NO₂ level in the gas stream is about zero at the entrance of the reactor, with NO being the main component of the NO_x binary mixture. NO can be oxidised to NO₂ by O₂ according to

$$NO + 1/2O_2 \leftrightarrows NO_2.$$
 (6)

The predicted NO_2 level considering the thermodynamic equilibrium of this reaction is represented in Fig. 5a as a dotted line.

 TiO_2 -600 and ZrO_2 -600 exhibited no activity for NO₂ production, and the NO₂ level reached with these oxides is the

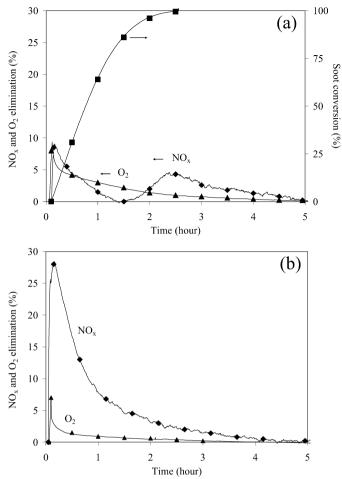


Fig. 6. Isothermal experiments at $450 \,^{\circ}$ C under NO_x/O₂ performed with CeO₂-600: (a) catalysed soot oxidation and (b) blank experiment.

same than that measured in the absence of catalyst (Fig. 5a). In the same way, the total concentration of NO_x was constant throughout the experiments performed with these two oxides, and their NO_x elimination profiles (included in Fig. 5b) exhibited the background level. In contrast, CeO₂-600 was quite effective for NO oxidation to NO₂ from 300 °C (Fig. 5a). The NO₂ profile obtained with this catalyst increased with temperature until the thermodynamic equilibrium of Eq. (6) was fulfilled, and then decreased at higher temperatures following thermodynamics. The highest NO₂ concentration was reached at 450 °C. This ability of CeO₂ in NO₂ production was reported previously [33]. In addition, NO_x is stored on CeO₂-600 above ca. 250 °C, as shown in Fig. 5b. Physical adsorption of NO_x can be ruled out in this temperature range, and chemical NO_x - CeO_2 interaction is expected. NO_x desorption did not occur even though the catalyst was heated up to 700 °C. Fig. 5b also compiles the NO_x elimination profile corresponding to the soot oxidation in TPRs performed with the CeO_2-600 (previously included in Fig. 4c). Surprisingly, NO_x elimination decreased in the presence of soot with regard to the blank experiment.

Isothermal soot oxidation at 450 °C was performed under NO_x/O₂ with the CeO₂-600 catalyst, and a blank experiment (using the same catalyst but without soot) was performed under similar conditions. The soot conversion and NO_x and O₂ elim-

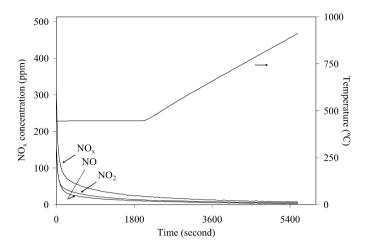


Fig. 7. Thermal treatment of CeO₂-600 under N₂ flow after the isothermal experiment at 450 °C under NO_x/O₂ (previously illustrated in Fig. 6b).

ination curves are illustrated in Fig. 6a, and those obtained in the blank experiment are shown in Fig. 6b. The soot conversion percentages (Fig. 6a) increased with time until total consumption, and both NO_x and O_2 were eliminated from the gas stream during soot gasification. In this case, CO_2 was the only carbon product; CO emission was not detected. Special attention should be given to the NO_x elimination curve, which showed two peaks, one appearing at the beginning of the soot oxidation experiment and the second appearing once the soot consumption was almost complete. In contrast, O_2 elimination reached a maximum level early and then decreased progressively until zero. Note that little O_2 elimination occurred after total soot conversion.

The NO_x and O₂ elimination profiles were different in the blank experiment. In this case, a maximum elimination of both NO_x and O₂ was reached after a few minutes, after which the levels progressively decreased to zero. The maximum NO_x elimination level reached in the blank experiment exceeded the maximum level reached during the catalysed soot oxidation reaction, whereas the opposite situation was observed for the O₂ profiles.

Once the blank experiment was finished, the NO_x/O_2 mixture was replaced by N₂ and the temperature was raised up to 900 °C. As observed in Fig. 7, NO and NO₂ released, indicating that the previous NO_x chemisorption is reversible and NO_x stored on CeO₂-600 is further recovered under inert atmosphere (but not under NO_x/O₂, as mentioned).

Finally, after a blank experiment at 450 °C under NO_x/O_2 (similar to that included in Fig. 6b), the gas flow was replaced by N₂ and the furnace was cooled down quickly (after 20 min the temperature was below 250 °C). The gas composition was monitored during this time and evidences of emission of NO or NO₂ were not observed. Once the furnace reached room temperature, the CeO₂-600 was removed from the reactor and mixed with soot. A TPR was then performed with this pretreated catalyst using the gas mixture O₂/N₂. This experiment was done to determine the eventual contribution of the NO_x species stored on the catalyst at 450 °C to the soot oxidation process.

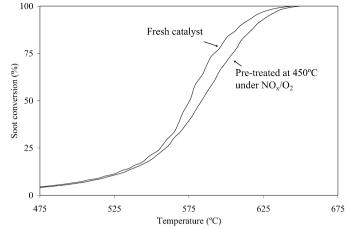


Fig. 8. CeO_2 -600-catalysed soot oxidation by O_2 in temperature programmed reactions performed with fresh catalyst and with the pre-treated catalyst.

Fig. 8 shows the soot conversion profile thus obtained, along with the curve corresponding to a similar experiment carried out with fresh catalyst. As can be deduced from Fig. 8, NO_x stored on CeO₂ at 450 °C did not improve soot conversion, which occurred at even slightly higher temperature with the pretreated catalyst compared with the fresh catalyst.

4. Discussion

4.1. Comparison of MO₂ catalysts

It is generally known that surface area is of great importance in gas-solid catalysed reactions and that it becomes even more importantce in reactions in which catalyst (oxide) and one of the reactants (soot) must be in close contact. External surface area is the factor mainly responsible for the BET areas of the materials used in this study; thus, a relationship between surface area and particle size is common. For CeO₂, the results of the present study suggest that the relationship between the BET surface areas of CeO₂-600 and CeO₂-800 (37 and 6 m^2/g , respectively) and their catalytic activity ($T_{50\%} = 551$ and $581 \,^{\circ}\text{C}$, respectively) is not directly related to the soot-catalyst contact. As can be deduced from the catalytic tests, the high activity of CeO₂-600 for soot oxidation can be attributed to the conversion of NO to NO₂; for this reason, high surface area is preferable. Note that NO₂ had a much greater oxidizing effect than either NO or O₂. Calcination of CeO₂ at high temperature ($800 \degree$ C) had a negative effect on its activity with regard to calcination at 600 °C due to sintering, thereby decreasing the BET surface area and also affecting some other properties of the oxide (e.g., oxygen storage capacity, oxygen mobility) that could be related to NO₂ production [33,34]. Calcination of CeO₂ at 800 °C also decreased its selectivity for CO₂ formation, instead of CO, as a soot oxidation product.

Despite the fact that a catalyst's BET surface area affects its catalytic activity, the nature of the catalyst is a more decisive factor than BET when MO₂ (M = Ti, Zr, Ce) oxides are compared. For instance, CeO₂-600, with 37 m²/g, is much more active for soot oxidation than TiO₂-600 or ZrO₂-600, both with

47 m²/g. This is because CeO₂ is able to catalyse the NO oxidation to NO₂, as mentioned, whereas TiO₂ and ZrO₂ are not.

The effect of calcination temperature on TiO_2 and ZrO_2 catalytic activity for soot oxidation is more complicated than that described for CeO_2 . The phase composition of TiO_2 and ZrO₂ depends on the calcination temperature. Rutile phase is favoured for TiO₂ calcined at high temperature; monoclinic phase is favoured for ZrO₂ calcined at high temperature. Taking into account that the differences in catalytic activity of TiO2-600 vs TiO₂-800 and ZrO₂-600 vs ZrO₂-800 are minor, it is possible to conclude that the phase composition does not play a crucial role on the activity of TiO₂ and ZrO₂ for soot oxidation. In the case of TiO_2 , this observation was already reported [35]. Taking this idea into consideration, the minor differences in activity between TiO₂-600 and TiO₂-800 and between ZrO₂-600 and ZrO₂-800 could be attributed to the extent of soot-catalyst contact, which is related to their BET surface area. Because TiO_2 and ZrO_2 do not catalyse the NO oxidation to NO₂, the effect of surface area on this reaction can be ruled out.

With regard to NO_r and O_2 elimination, both gases were consumed during the uncatalysed soot oxidation reaction. This process is not selective toward NO_x reduction; above ca. 500 °C, O₂ oxidises soot to CO and CO₂, and NO_x is reduced. TPRs followed by gas chromatography were performed without catalyst and with the CeO₂-600 catalyst; the results show that N_2 was the product of NO_x reduction; formation of N₂O was not observed. TiO₂ and ZrO₂ catalysts exhibited O_2 and NO_x elimination profiles qualitatively similar to those observed in the uncatalysed process. NO_x was reduced, along with a massive O_2 consumption above ca. 500 °C, indicating that these catalysts are not selective for NO_x reduction by soot. The NO_x elimination profiles obtained with the CeO₂ catalysts (mainly CeO₂-600 and, to a much lower extent, CeO₂-800) are quite different from those of TiO₂ and ZrO₂. Along with the aforementioned NO_x reduction above 500 °C, another NO_x elimination pathway occurred at lower temperature. We discuss this in detail in the next section.

Finally, an additional difference among the MO₂ catalysts studied here is the different selectivity for the formation of CO₂ instead of CO as the soot oxidation product. This can be seen in the data presented in Table 2. A general feature of carbon combustion reactions is that the CO/CO₂ ratio increases with temperature, because CO₂ is preferred at low temperature and CO is preferred at high temperature. Considering this idea, the highest selectivity of CeO₂-600 for CO₂ formation could be due on one hand to its highest activity for soot oxidation. CeO₂-600-catalysed soot combustion occurs in the lowest temperature range, and thus, CO formation is the lowest one. However, this general argument is not valid for explaining some of the data given in Table 2. For instance, TiO₂-600 and ZrO₂-600 had about the same $T_{50\%}$ value (593 and 592 °C, respectively), whereas their selectivity for CO₂ formation differed dramatically (CO = 56.6 and 43.4%, respectively). This is because of the differing activities of the catalysts in accelerating the reaction

 $\mathrm{CO} + 1/2\mathrm{O}_2 \to \mathrm{CO}_2. \tag{7}$

It is known that CeO_2 is a very effective catalyst for this reaction through oxidation using lattice oxygen [36]. The results obtained here suggest that TiO_2 is more active than ZrO_2 in catalysing reaction (7).

4.2. On the mechanism of CeO_2 -catalysed NO_x -soot reaction

Depending on the reaction temperature, CeO₂ can participate in the CeO₂-catalysed NO_x-soot reaction mechanism in different ways. At low temperature, CeO₂ adsorbs NO_x, as can be deduced from the inset of Fig. 4c. It has been reported [32] that NO₂ stored at low temperature (200 °C [33]) can be decomposed at higher temperatures, and that the NO₂ thus evolved contributes to the accelerated oxidation of soot. But in a continuously regenerated soot trap, the temperature must be maintained above 200 °C; otherwise, soot is not converted to CO₂. Therefore, NO_x storage at low temperature would not be expected to play a role in an actual trap.

At higher temperatures (above 250 °C), CeO₂ catalyses the oxidation of NO to NO_2 by Eq. (6), as shown in Fig. 5a. In the presence of soot, part of the NO2 produced reacts with soot and part is chemisorbed on the oxide. The high efficiency of CeO₂ for NO₂ production is the main reason for the higher activity of this oxide for soot oxidation compared with TiO₂ or ZrO₂. The competition between NO₂ adsorption on CeO₂ and NO₂ reaction with soot can be clearly seen in Fig. 6. The amount of NO_x eliminated at the beginning of the soot oxidation isothermal reaction at 450 °C (first peak of the NO_x profile in Fig. 6a) was less than the amount of NO_x eliminated in the absence of soot (Fig. 6b). In the presence of soot, part of the NO₂ produced by CeO₂ became NO due to soot oxidation and was not available for retaintion on CeO2. However, once the soot was almost consumed, a second retention peak occurred (Fig. 6a), because although NO₂ consumption by soot no longer occurred to any great extent, the maximum NO_x storage capacity of CeO₂ was not yet fulfilled. Another difference in behaviour among the three MO₂ oxides studied under NO_x/O₂ mixtures was the lack of NO_x accumulation on ZrO_2 and TiO_2 .

The NO_x stored on CeO₂ during catalysed soot oxidation under a NO_x or O₂ stream at 450 °C did not contribute to soot oxidation. As can be deduced from Fig. 8, the fresh CeO₂-600 for soot oxidation by O₂ and the same catalyst pretreated under NO_x/O₂ at 450 °C had about the same catalytic activity. In addition, the results obtained in this study do not demonstrate the amount of NO_x stored on CeO₂ released under NO_x/O₂ atmosphere. This is supported by the fact that the NO_x elimination profiles shown in Fig. 5b corresponding to CeO₂-600 did not reach negative values within the range of temperatures studied. The amount of NO_x stored on CeO₂ only was released under a NO_x-free gas stream, as shown in Fig. 7, which includes NO_x evolution profiles obtained under N₂.

5. Conclusions

Based on our comparison of the catalytic activity of TiO_2 , ZrO_2 , and CeO_2 for soot oxidation under NO_x/O_2 , we can draw the following conclusions:

- CeO₂-600 is more active than TiO₂-600 and ZrO₂-600 for soot oxidation because it accelerates the conversion of NO to NO₂, whereas TiO₂ and ZrO₂ do not catalyse this reaction. The catalytic activity of all these three oxides decreases when calcined at 800 °C, with CeO₂ maintaining the highest activity among the three oxides studied despite the significant decrease in BET surface area.
- The phase composition of TiO₂ (rutile or anatase) and ZrO₂ (monoclinic or tetragonal) has no significant affect on the catalytic activity of these oxides. The main feature of these oxides that affects their activity is BET surface area, which may be related to better soot-catalyst contact.
- During CeO₂-catalysed soot oxidation, NO_x is stored on this oxide. This is not the case for TiO₂- or ZrO₂-catalysed soot oxidation. However, NO_x stored on CeO₂ does not accelerate soot oxidation. NO_x stored on CeO₂ evolves subsequently under N₂ flow but not under NO_x/O₂ flow.
- During CeO₂-catalysed soot oxidation under NO_x/O₂, once NO₂ is produced by CeO₂, there is a competition between the NO₂-soot reaction and NO_x storage on the catalyst.
- CeO₂-600 catalysed soot oxidation yields mainly CO₂, whereas TiO₂-600- and ZrO₂-600-catalysed soot oxidation yield higher percentages of CO. This additional benefit of CeO₂ compared with the other oxides can be explained considering two facts: (i) CeO₂-catalysed soot oxidation occurs at the lowest temperature, and (ii) CeO₂ catalyses the oxidation of CO to CO₂. CeO₂ calcination at 800 °C instead of 600 °C has a negative affect on the selectivity of this oxide toward CO₂ production.

Acknowledgments

Financial support was provided by the Spanish Ministry of Education and Science (project CTQ2005-01358) and a contract of ABL (Ramon y Cajal Program), which is co-funded by the Generalitat Valenciana and the University of Alicante.

References

- R.H. Hammerle, D.A. Ketcher, R.W. Horrocks, G. Lepperhoff, G. Hüthwohl, B. Lüers, SAE Technical Paper Series, Paper Number 942043, 1994.
- [2] J.C. Summers, S. Van Houtte, D. Psaras, Appl. Catal. B 10 (1996) 139.
- [3] J.H. Johnson, S.T. Bagley, L.D. Gratz, D.G. Leddy, SAE Technical Paper Series, Paper Number 940233, 1992.
- [4] J. Oi-Uchisawa, S. Wang, T. Nanbaa, A. Ohi, A. Obuchi, Appl. Catal. B 44 (2003) 207.

- [5] B.A.A.L. van Setten, J. Bremmer, S.J. Jelles, M. Makke, J.A. Moulijn, Catal. Today 53 (1999) 613.
- [6] S. Biamino, P. Fino, D. Fino, N. Russo, C. Badini, Appl. Catal. B 61 (2005) 297.
- [7] A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, Catal. Lett. 99 (2005) 203.
- [8] A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, J. Catal. 230 (2005) 237.
- [9] J. Oi-Uchisawa, A. Obuchi, R. Enomoto, S. Liu, T. Nanba, S. Kushiyama, Appl. Catal. B 26 (2000) 17.
- [10] K. Villani, W. Vermandel, K. Smets, D. Liang, G. Van Tendeloo, J.A. Martens, Environ. Sci. Technol. 40 (2006) 2727.
- [11] J.P.A. Neeft, O.P. van Pruissen, M. Makkee, J.A. Moulijn, Appl. Catal. B 12 (1997) 21.
- [12] S. Braun, L.G. Appel, M. Schmal, Appl. Surf. Sci. 201 (2002) 227.
- [13] M. Piacentini, M. Maciejewski, A. Baiker, Appl. Catal. B 72 (2007) 105.
- [14] A. Kotsifa, D.I. Kondarides, X.E. Verykios, Appl. Catal. B 72 (2007) 136.
- [15] J. van Doorn, J. Varloud, P. Meriaudeau, V. Perrichon, M. Chevrier, C. Gauthier, Appl. Catal. B 1 (1992) 117.
- [16] J.P.A. Neeft, M. Makkee, J.A. Moulijn, Chem. Eng. J. 64 (1996) 295.
- [17] E. Djurado, P. Bouvier, G. Lucazeau, J. Solid State Chem. 149 (2000) 399.
- [18] B.-K. Kim, J.-W. Hahn, K.R. Han, J. Mater. Sci. Lett. 16 (1997) 669.
- [19] L.D. Huy, P. Laffez, P. Daniel, A. Jouanneaux, N.T. Khoi, D. Simeone, Mater. Sci. Eng. B 104 (2003) 163.
- [20] D.R. Clarke, J. Am. Ceram. Soc. 65 (1982) 284.
- [21] M.S. Kaliszewski, G. Behrens, A.H. Heuer, M.C. Shaw, D.B. Marshall, G.W. Dransmanri, R.W. Steinbrech, A. Pajares, F. Guiberteau, F.L. Cumbrera, A. Dominguez-Rodriguez, J. Am. Ceram. Soc. 77 (1994) 1185.
- [22] C. Su, B.Y. Hong, C.M. Tseng, Catal. Today 96 (2004) 119.
- [23] R.A. Spurr, H. Myers, Anal. Chem. 29 (1957) 760.
- [24] S.R. Dhage, V.D. Choube, V. Samuel, V. Ravi, Mater. Lett. 58 (2004) 2310.
- [25] H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7 (1995) 663.
- [26] S.P.S. Porto, P.A. Fleury, T.C. Daman, Phys. Rev. 154 (1967) 522.
- [27] S.J. Rigby, A.H.R. Al-Obaidi, S.-K. Lee, D. McStay, P.K.J. Robertson, Appl. Surf. Sci. 252 (2006) 7948.
- [28] L.A. Cortez-Lajas, J.M. Hernández-Enríquez, A. Castillo-Mares, J.L. Rivera-ARmetna, G. Sandoval-Robles, L.A. García-Serrano, R. García-Alamilla, Rev. Mexicana Ing. Quím. 5 (2006) 321.
- [29] D. Michel, M. Perez, Y. Jorba, R. Collonges, J. Raman Spectrosc. 5 (1976) 163.
- [30] L.N. Ikryannikova, A.A. Aksenov, G.L. Markaryan, G.P. Muraveva, B.G. Kostyuk, A.N. Kharlanov, E.V. Lunina, Appl. Catal. A 210 (2001) 225.
- [31] A. Mineshige, T. Taji, Y. Muroi, M. Kobune, S. Fujii, N. Nishi, M. Inaba, Z. Ogumi, Solid State Ionics 135 (2000) 481.
- [32] Y. Li, Q. Zhu, X. Zhang, B. Xu, J. Catal. 221 (2004) 584.
- [33] A. Setiabudi, J. Chen, G. Mul, M. Makke, J.A. Moulijn, Appl. Catal. B 51 (2004) 9.
- [34] E. Rocchini, A. Trovarelli, J. Llorca, G.W. Graham, W.H. Weber, M. Maciejewski, A. Baiker, J. Catal. 194 (2000) 461.
- [35] I. Atribak, I. Such-Basáñez, A. Bueno-López, A. García-García, Catal. Commun. 8 (2007) 478.
- [36] J. Kăspar, P. Fornasiero, M. Graziani, Catal. Today 50 (1999) 285.